運動控制和人工智能是人形機器人技術落地的核心難點。
一方面,人形機器人的機械構造、驅動和控制的復雜程度都遠高于現(xiàn)有的機器人。要使人形機器人像人一樣運動,并按要求執(zhí)行任務,開發(fā)者需要設計合理高效的機械結構(骨骼),
根據(jù)各部位運動需求構建執(zhí)行精度高的驅動系統(tǒng)(肌肉),并開發(fā)具有高度穩(wěn)定性和適應性的控制系統(tǒng)(神經(jīng)系統(tǒng));
同時供應鏈層面的材料、芯片、電池系統(tǒng)、零部件等也需要持續(xù)提質和創(chuàng)新。
另一方面,要賦予人形機器人以一定的自
主性完成任務的能力,即實現(xiàn)一定程度的認知和決策智能,尚需要人工智能軟硬件(大腦)的高度發(fā)展,道阻且長。
人形機器人技術難點如下
1 導航避障
涉及對環(huán)境的認知,以及路徑規(guī)劃、避障、制動等決策,與自動駕駛存在相似之處;但人形機器人工作環(huán)境非結構化,且活動形式是在三維空間中活動,所需決策可能更為復雜,需要人工智
能的進一步發(fā)展。
2 自主行動
包括與人的交互和與物的交互,目前的技術距離讓機器人自主決定“怎么做”還很遙遠 ,
要求人工智能軟硬件(算法+芯片)都發(fā)展到非常高的層次。
3 雙足行動
從保持站立,到穩(wěn)定行走、實現(xiàn)跑動,每一步都存在挑戰(zhàn)。機械結構設計層面,需要合理
設計機器人腿腳結構,以及各部分的連接和運動方式;驅動層面,腿部輸出大扭矩的需求,需要高功
率密度的電機;計算和控制層面,規(guī)劃行走動作涉及多體運動和接觸建模相關的規(guī)劃和運算,實現(xiàn)有
適應性的穩(wěn)定行走,以及跑動、轉彎等動作,則需要根據(jù)傳感器數(shù)據(jù)對動作進行實時調整,對控制算
法和控制器要求較高。
4 多指手和雙手協(xié)作
執(zhí)行層面,要求更高精度的驅動,以及傳感器的閉環(huán)反饋;決策和控制層面,可
能涉及多傳感器融合、實時計算與調整等挑戰(zhàn),以確保找到動作對象并施加適宜幅度和力度的動作。
5 電源系統(tǒng)
滿足機器人復雜運算高能耗的需求,同時盡可能延長續(xù)航,對電池功率密度及電源管理系統(tǒng)
提出要求。
6 小體積+輕量化
零部件小型輕質、集成方式優(yōu)化;機器人本體材料創(chuàng)新。
7 散熱
散熱器件和材料的研發(fā)和創(chuàng)新;芯片設計制造的持續(xù)進步。
諧波減速器是一種靠波發(fā)生器使柔輪產(chǎn)生可控的彈性變形波,器具有單級傳動比大,體積小,質量小,運動精度高等特征;RV減速器是是旋轉矢量(Rotary Vector)減速器的簡稱
與RV及其他精密減速器相 比,諧波減速器使用的材料,體積及 重量大幅度下降;精度往往不及諧波減速器,一般應用于多關節(jié)機器人中機座
中國機器視覺技術在工業(yè)領域應用較多,產(chǎn)業(yè)分布與中國制 造業(yè)發(fā)達地區(qū)的地理位置聯(lián)系較緊密,在廣東省、江浙滬等 地區(qū)較集中,誕生了多個中國機器視覺產(chǎn)業(yè)鏈上中游龍頭企業(yè)
一種用于機械臂的末端連桿裝置,包括末端連桿主體,末端連桿主體設置在機械臂的輸出端;至少一個握持部,握持部能夠被握持,與末端連桿主體一體地形成
SLAM是即時定位與地圖構建,主要用于解決機器人在 實際環(huán)境中的定位與運動導航問題;云平臺為機器人提供更大的信息存儲空間和 超強的計算能力
芯片主要負責機器人作業(yè)的數(shù)據(jù)計算和指令下達;控制器主要負責發(fā)布和傳遞動作指令;伺服舵機主要用于驅動機器人的關節(jié);減速器主要安裝在機器人關節(jié)處
傳感器是機器人具有類人知覺與反應能力的基礎,可分為用于測量智能機器人自身狀態(tài)的內部傳感器和用于測量與機器人作業(yè)相關的外部因素的外部傳感器
可使用半導體器件或將符合歐姆定律的電阻性元件封裝在半導體器件管殼內制成的發(fā)熱元件作為熱源,避免半導體器件的導通角對功率計算的影響
1政策扶持:機器人產(chǎn)業(yè)營業(yè)收入年均增速超過20%;2社會因素:勞動供給減少,人口老齡化和人工成本走高;3經(jīng)濟發(fā)展:第三產(chǎn)業(yè)有望拉動對服務機器人的需求量
CyberOne(小米動力)身高177體重52自由度21最大負荷1.5成本70萬人民幣;Optimus身高172體重73自由度50最大負荷9成本2萬美元
電機驅動上擎天柱擁有 2.3KWH,52V 電壓的電池組;28個定制關節(jié)驅動器,6種關節(jié)驅動;采用仿生思維將機器人膝關節(jié)構造成四連推桿結構
特斯拉人形機器人采用智能駕駛攝像頭與Autopilot 算法,內置 FSD 芯片,能夠識別周 圍物理環(huán)境的高頻特征并進行立體渲染,良好的空間感知能力
哈工大HIT-III機器人能完成上,下斜坡等動作;THBIP-II身高 0.75m,具有 24 個自由度;Walker機器人能完成上,下臺階等動作;鐵大CyberOne 13 個關節(jié)和21個自由度
送餐機器人推廣過程中也出現(xiàn)了一些技術瓶頸,在送餐過程中循跡路徑偏差,人機交互功能不夠智能化等問題,循跡過程中路徑穩(wěn)定性和障礙物識別可靠性
機器人心靈感應和類似技術將使機器人在更廣泛的環(huán)境中進行教學,使用我們的機器人遙動系統(tǒng)收集大規(guī)模數(shù)據(jù),以教機器人在現(xiàn)實世界中自主行動和適應